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What's this all about
● We like to build advanced websites
● We want them to be popular
● Hopefully they become popular
● They fall over

● So we add caching
● Which adds new issues



  

Where to cache
● Many different locations to cache:

● In the database server (buffer cache)
● In the database server (“query cache”)
● In the application server
● Before the application server (“http 

cache”)
● In the client

● The closer to the client, the more efficient



  

Typical architecture
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In this presentation
● Let's build a blog!
● A really simple one!
● But we're popular! (right?)



  

Intro to the application
● We'll use PostgreSQL (d'uh)
● We'll use django

● Theory is framework independent
● Django-admin makes life easy...

● We'll use Varnish



  

Let's create the application

$ django-admin startproject demo

$ manage.py startapp blog

● Configure our database connection
● Enable the django admin site
● Add our application



  

Create a simple model
● We're just going to hold blog posts
● Title, date/time, and contents
● And add it to the admin site
● Sync the database



  

Create simple views
● One view to list all blog posts

● Served up as /
● One view to show the posts

● Served up as /<blog post id>/
● (let's ignore nice URLs and CSS for now)



  

Try it out
● Using local django web server

$ ./manage.py runserver
● Each click causes appserver call
● Which in turn causes db query



  

Add varnish to the mix
● Very simple default install:

● Relay all URLs to localhost:8000
● Cache all pages for 1 hour
● Ignore cookie-related issues

– (this is not a varnish session, after 
all...)



  

Issues with caching
● Some content rapidly go stale

● Solution: cache only a short time!
● Some content is very long-lived

● Solution: cache a long time!
● Sometimes unpredictable

● Per-url or per-request cache values 
become sub-optimal



  

On-demand invalidation
● Cache most objects for a long time
● Explicitly remove them from the cache

● When object modified in app
● When dependent object modified in app
● ...



  

Cache invalidation
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What about other apps!
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Invalidate from the db!
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Ups and Downs
● Upside

● Cache invalidation when relevant data 
changes

● Regardless of origin of change
● Downside

● Database needs to gain URL knowledge
● Breaks “clean abstraction model”



  

Invalidation: method 1
● Create a trigger on the blog_post table
● Have it send off a varnish purge request



  

Invalidation: method 2
● Create a trigger on the blog_post table
● Trigger inserts the request in a queue 

table
● Trigger on the queue table fires a NOTIFY
● Daemon listens to notifies and sends 

purge requests



  

Invalidation: method 3
● We just created a trivial queue
● There are ready-made queues out there
● Pgq!
● High performance and efficient
● Offload work of dealing with multiple 

caches etc



  

Install pgq
● Install pgq in the database
● Create our queue
● Start a “ticker” process



  

Write simple consumer
● Consumes events from pgq
● Generates varnish purge requests
● Run one consumer for each varnish 

server



  

Pgq hand-holding
● Needs almost nothing
● But don't forget to monitor it!
● pgqadm.py pgq.ini status
● Or munin plugin



  

Final words
● Keep setting cache expiry times

● s-maxage etc
● Then use purging only when needed
● You don't want thousands per second



  

Thank you!

Questions?

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net
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