

Data Driven Cache
Invalidation

JDCon-East 2011
New York City, USA

Magnus Hagander
magnus@hagander.net

PRODUCTS • CONSULTING • APPLICATION MANAGEMENT • IT OPERATIONS • SUPPORT • TRAINING

What's this all about
● We like to build advanced websites
● We want them to be popular
● Hopefully they become popular
● They fall over

● So we add caching
● Which adds new issues

Where to cache
● Many different locations to cache:

● In the database server (buffer cache)
● In the database server (“query cache”)
● In the application server
● Before the application server (“http

cache”)
● In the client

● The closer to the client, the more efficient

Typical architecture

Database
Application

serverCache

Typical architecture

Database
Application

serverCache

GET /news/123
GET /news/123
GET /news/123
GET /news/123
...

GET /news/123
SELECT * FROM
news INNER JOIN …
…
WHERE id=123

In this presentation
● Let's build a blog!
● A really simple one!
● But we're popular! (right?)

Intro to the application
● We'll use PostgreSQL (d'uh)
● We'll use django

● Theory is framework independent
● Django-admin makes life easy...

● We'll use Varnish

Let's create the application

$ django-admin startproject demo

$ manage.py startapp blog

● Configure our database connection
● Enable the django admin site
● Add our application

Create a simple model
● We're just going to hold blog posts
● Title, date/time, and contents
● And add it to the admin site
● Sync the database

Create simple views
● One view to list all blog posts

● Served up as /
● One view to show the posts

● Served up as /<blog post id>/
● (let's ignore nice URLs and CSS for now)

Try it out
● Using local django web server

$./manage.py runserver
● Each click causes appserver call
● Which in turn causes db query

Add varnish to the mix
● Very simple default install:

● Relay all URLs to localhost:8000
● Cache all pages for 1 hour
● Ignore cookie-related issues

– (this is not a varnish session, after
all...)

Issues with caching
● Some content rapidly go stale

● Solution: cache only a short time!
● Some content is very long-lived

● Solution: cache a long time!
● Sometimes unpredictable

● Per-url or per-request cache values
become sub-optimal

On-demand invalidation
● Cache most objects for a long time
● Explicitly remove them from the cache

● When object modified in app
● When dependent object modified in app
● ...

Cache invalidation

Database
Application

serverCache

purge /news/*

Database
Application

server
Cache

GET /news/123
GET /news/123
GET /news/123
GET /news/123
...

GET /news/123
SELECT * FROM
news INNER JOIN …
…
WHERE id=123

What about other apps!

Database
Application

server
Cache

purge /news/*

Database
Application

server
Cache

GET /news/123
GET /news/123
GET /news/123
GET /news/123
...

GET
/news/123 SELECT * FROM

news INNER JOIN
…
…
WHERE id=123

Application X

Application Y

Application Z

Invalidate from the db!

Database
Application

server
Cache

purge /news/*

Database
Application

server
Cache

GET /news/123
GET /news/123
GET /news/123
GET /news/123
...

GET
/news/123 SELECT * FROM

news INNER JOIN
…
…
WHERE id=123

Application X

Application Y

Application Z

Ups and Downs
● Upside

● Cache invalidation when relevant data
changes

● Regardless of origin of change
● Downside

● Database needs to gain URL knowledge
● Breaks “clean abstraction model”

Invalidation: method 1
● Create a trigger on the blog_post table
● Have it send off a varnish purge request

Invalidation: method 2
● Create a trigger on the blog_post table
● Trigger inserts the request in a queue

table
● Trigger on the queue table fires a NOTIFY
● Daemon listens to notifies and sends

purge requests

Invalidation: method 3
● We just created a trivial queue
● There are ready-made queues out there
● Pgq!
● High performance and efficient
● Offload work of dealing with multiple

caches etc

Install pgq
● Install pgq in the database
● Create our queue
● Start a “ticker” process

Write simple consumer
● Consumes events from pgq
● Generates varnish purge requests
● Run one consumer for each varnish

server

Pgq hand-holding
● Needs almost nothing
● But don't forget to monitor it!
● pgqadm.py pgq.ini status
● Or munin plugin

Final words
● Keep setting cache expiry times

● s-maxage etc
● Then use purging only when needed
● You don't want thousands per second

Thank you!

Questions?

Twitter: @magnushagander
http://blog.hagander.net/
magnus@hagander.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

